Jan 16'24

Exercise

A club is established with 2000 members, 1000 of exact age 35 and 1000 of exact age 45 . You are given:

(i) Mortality follows the Standard Ultimate Life Table

(ii) Future lifetimes are independent

(iii) [math] N[/math] is the random variable for the number of members still alive 40 years after the club is established

Using the normal approximation, without the continuity correction, calculate the smallest [math]n[/math] such that [math]\operatorname{Pr}(N \geq n) \leq 0.05[/math].

  • 1500
  • 1505
  • 1510
  • 1515
  • 1520

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 16'24

Answer: B

[math]E(N)=1000\left({ }_{40} p_{35}+{ }_{40} p_{45}\right)=1000\left(\frac{85,203.5}{99,556.7}+\frac{61,184.9}{99,033.9}\right)=1473.65[/math]

[math]\operatorname{Var}(N)=1000_{40} p_{35}\left(1-{ }_{40} p_{35}\right)+1000_{40} p_{45}\left(1-{ }_{40} p_{45}\right)=359.50[/math]

Since [math]1473.65+1.645 \sqrt{359.50}=1504.84[/math]

[math]N=1505[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00