BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
For each of the following parametrizations [math]P(t) = (x(t),y(t))[/math], find the derived vector [math]\vec dP(t)[/math] for an arbitrary value of [math]t[/math] in the domain. Draw the vectors [math]\vec dP(0)[/math], [math]\vec dP(1)[/math], and [math]\vec dP(2)[/math] in the [math]xy[/math]-plane.
- [math]\dilemma{x(t) = t^2-1,} {y(t) = t^3, \quad -1\leq t \leq3.}[/math]
- [math]\dilemma{x(t) = \frac12(e^t+e^{-t}),} {y(t) = \frac12(e^t-e^{-t}), \quad -\infty \lt t \lt \infty.}[/math]
- [math]\dilemma{x(t) = t^2,} {y(t) = \frac23(3t+1)^{\frac32}, \quad -\frac13 \leq t \leq 5.}[/math]
- [math]\dilemma{x(t) = t^2+t+1,} {y(t) = \frac{t^3}3 + t^2 - 1, \quad -\infty \lt t \lt \infty.}[/math]