Jan 16'24

Exercise

You are given:

i) The following extract from a three-year select and ultimate table:

[math][x][/math] [math]q_{[x]}[/math] [math]q_{[x]+1}[/math] [math]q_{[x]+2}[/math] [math]q_{x+3}[/math] [math]x+3[/math]
50 0.020 0.031 0.043 0.056 53
51 0.025 0.037 0.050 0.065 54
52 0.030 0.043 0.057 0.072 55
53 0.035 0.049 0.065 0.091 56
54 0.040 0.055 0.076 0.113 57
55 0.045 0.061 0.090 0.140 58

ii) Mortality follows a uniform distribution of deaths over each year of age

Calculate [math]1000_{\left(0.6 \mid 1.5 q_{[52]+1.7}\right)}[/math].

  • 91
  • 92
  • 93
  • 94
  • 95

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 16'24

Answer: C

[math][x][/math] [math]q_{[x]}[/math] [math]q_{[x]+1}[/math] [math]q_{[x]+2}[/math] [math]q_{x+3}[/math] [math]x+3[/math]
52 0.030 0.043 0.057 0.072 55

[math]l_{[52]}=1000[/math] (arbitrary, for convenience; any other value would work and give the same answer)

[math]l_{[52]+1}=1000(1-0.03)=970[/math]

[math]l_{[52]+2}=970(1-0.043)=928.29[/math]

[math]l_{55}=928.29(1-0.057)=875.3775[/math]

[math]l_{56}=875.3775(1-0.072)=812.3503[/math]

[math]l_{[52]+2.3}=(0.7) l_{[52]+2}+(0.3) l_{55}=912.42[/math]

[math]l_{[52]+3.8}=l_{55.8}=(0.2) l_{55}+(0.8) l_{56}=824.96[/math]

[math]l_{[52]+1.7}=(0.3) l_{[52]+1}+(0.7) l_{[52]+2}=940.80[/math]

[math]1000\left(\left(_{0.6 \mid 1.5} q_{[52]+1.7}\right)=1000 \frac{912.42-824.96}{940.80}=92.96\right.[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00