Exercise
You are given:
i) The following extract from a three-year select and ultimate table:
[math][x][/math] | [math]q_{[x]}[/math] | [math]q_{[x]+1}[/math] | [math]q_{[x]+2}[/math] | [math]q_{x+3}[/math] | [math]x+3[/math] |
---|---|---|---|---|---|
50 | 0.020 | 0.031 | 0.043 | 0.056 | 53 |
51 | 0.025 | 0.037 | 0.050 | 0.065 | 54 |
52 | 0.030 | 0.043 | 0.057 | 0.072 | 55 |
53 | 0.035 | 0.049 | 0.065 | 0.091 | 56 |
54 | 0.040 | 0.055 | 0.076 | 0.113 | 57 |
55 | 0.045 | 0.061 | 0.090 | 0.140 | 58 |
ii) Mortality follows a uniform distribution of deaths over each year of age
Calculate [math]1000_{\left(0.6 \mid 1.5 q_{[52]+1.7}\right)}[/math].
- 91
- 92
- 93
- 94
- 95
Answer: C
[math][x][/math] | [math]q_{[x]}[/math] | [math]q_{[x]+1}[/math] | [math]q_{[x]+2}[/math] | [math]q_{x+3}[/math] | [math]x+3[/math] |
---|---|---|---|---|---|
52 | 0.030 | 0.043 | 0.057 | 0.072 | 55 |
[math]l_{[52]}=1000[/math] (arbitrary, for convenience; any other value would work and give the same answer)
[math]l_{[52]+1}=1000(1-0.03)=970[/math]
[math]l_{[52]+2}=970(1-0.043)=928.29[/math]
[math]l_{55}=928.29(1-0.057)=875.3775[/math]
[math]l_{56}=875.3775(1-0.072)=812.3503[/math]
[math]l_{[52]+2.3}=(0.7) l_{[52]+2}+(0.3) l_{55}=912.42[/math]
[math]l_{[52]+3.8}=l_{55.8}=(0.2) l_{55}+(0.8) l_{56}=824.96[/math]
[math]l_{[52]+1.7}=(0.3) l_{[52]+1}+(0.7) l_{[52]+2}=940.80[/math]
[math]1000\left(\left(_{0.6 \mid 1.5} q_{[52]+1.7}\right)=1000 \frac{912.42-824.96}{940.80}=92.96\right.[/math]