May 01'23
Exercise
An insurance company sells a one-year automobile policy with a deductible of 2. The probability that the insured will incur a loss is 0.05. If there is a loss, the probability of a loss of amount [math]N[/math] is [math]KN[/math], for [math]N = 1, . . . , 5 [/math] and [math]K[/math] a constant. These are the only possible loss amounts and no more than one loss can occur.
Calculate the expected payment for this policy
- 0.031
- 0.066
- 0.072
- 0.110
- 0.150
May 01'23
Solution: A
Let us first determine [math]K[/math]. Observe that
[[math]]
1 = K(1 + 1/2 + 1/3 + 1/4 + 1/5) = K\frac{60 + 30 + 20 + 15 + 12}{60} = K \frac{137}{60}.
[[/math]]
Hence [math]K = \frac{60}{137}[/math]. It then follows that
[[math]]
\begin{align*}
\operatorname{P}[ N = n ] &= \operatorname{P}[ N = n | \textrm{Insured Suffers a Loss}] \operatorname{P}[ \textrm{Insured Suffers a Loss} ] \\
&= \frac{60}{137N}(0.05) = \frac{3}{137N}, \, N = 1,\ldots,5
\end{align*}
[[/math]]
Now because of the deductible of 2, the net annual premium [math]P = \operatorname{E}[X] [/math] where
[[math]]
X = \begin{cases}
0, \quad N \leq 2 \\
N-2, \quad N \gt 2
\end{cases}
[[/math]]
Then,
[[math]]
P = \operatorname{E}[X] = \sum_{N=3}^5 (N-2) \frac{3}{137N} = 0.0314.
[[/math]]