Jan 16'24

Exercise

You are given:

[math]x[/math] [math]l_{x}[/math]
60 99,999
61 88,888
62 77,777
63 66,666
64 55,555
65 44,444
66 33,333
67 22,222


[math]a={ }_{3.42 .5} q_{60}[/math] assuming a uniform distribution of deaths over each year of age [math]b={ }_{3.4 \mid 2.5} q_{60}[/math] assuming a constant force of mortality over each year of age Calculate 100,000(a-b).

  • -24
  • 9
  • 42
  • 73
  • 106

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 16'24

Answer: E

Using UDD

[math]l_{63.4}=(0.6) 66,666+(0.4)(55,555)=62,221.6[/math]

[math]l_{65.9}=(0.1)(44,444)+(0.9)(33,333)=34,444.1[/math]

[math]{ }_{3.4 \mid 2.5} q_{60}=\frac{l_{63.4}-l_{65.9}}{l_{60}}=\frac{62,221.6-34,444.1}{99,999}=0.277778[/math]

Using constant force

[[math]] \begin{aligned} l_{63.4} & =l_{63}\left(\frac{l_{64}}{l_{63}}\right)^{0.4}=l_{63}^{0.6} l_{64}^{0.4} \\ & =\left(66,666^{0.6}\right)\left(55,555^{0.4}\right) \\ & =61,977.2 \\ l_{65.9} & =l_{65}^{0.1} l_{66}^{0.9}=\left(44,444^{0.1}\right)\left(33,333^{0.9}\right) \\ & =34,305.9 \\ 3.4 \mid 2.5 & q_{60}=\frac{61,977.2-34,305.9}{99.999} \\ & =0.276716 \end{aligned} [[/math]]


[math]100,000(a-b)=100,000(0.277778-0.276716)=106[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00