Jan 16'24
Exercise
You are given:
[math]x[/math] | [math]l_{x}[/math] |
---|---|
60 | 99,999 |
61 | 88,888 |
62 | 77,777 |
63 | 66,666 |
64 | 55,555 |
65 | 44,444 |
66 | 33,333 |
67 | 22,222 |
[math]a={ }_{3.42 .5} q_{60}[/math] assuming a uniform distribution of deaths over each year of age [math]b={ }_{3.4 \mid 2.5} q_{60}[/math] assuming a constant force of mortality over each year of age Calculate 100,000(a-b).
- -24
- 9
- 42
- 73
- 106
Jan 16'24
Answer: E
Using UDD
[math]l_{63.4}=(0.6) 66,666+(0.4)(55,555)=62,221.6[/math]
[math]l_{65.9}=(0.1)(44,444)+(0.9)(33,333)=34,444.1[/math]
[math]{ }_{3.4 \mid 2.5} q_{60}=\frac{l_{63.4}-l_{65.9}}{l_{60}}=\frac{62,221.6-34,444.1}{99,999}=0.277778[/math]
Using constant force
[[math]]
\begin{aligned}
l_{63.4} & =l_{63}\left(\frac{l_{64}}{l_{63}}\right)^{0.4}=l_{63}^{0.6} l_{64}^{0.4} \\
& =\left(66,666^{0.6}\right)\left(55,555^{0.4}\right) \\
& =61,977.2 \\
l_{65.9} & =l_{65}^{0.1} l_{66}^{0.9}=\left(44,444^{0.1}\right)\left(33,333^{0.9}\right) \\
& =34,305.9 \\
3.4 \mid 2.5 & q_{60}=\frac{61,977.2-34,305.9}{99.999} \\
& =0.276716
\end{aligned}
[[/math]]
[math]100,000(a-b)=100,000(0.277778-0.276716)=106[/math]