BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Find the maximum possible value for [math]p(1 - p)[/math] if [math]0 \lt p \lt 1[/math]. Using this result and Exercise Exercise, show that the estimate
[[math]]
P\left( \left| \frac {S_n}n - p \right| \geq \epsilon \right) \leq \frac
1{4n\epsilon^2}
[[/math]]
is valid for any [math]p[/math].