May 01'23
Exercise
An auto insurance company insures an automobile worth 15,000 for one year under a policy with a 1,000 deductible. During the policy year there is a 0.04 chance of partial damage to the car and a 0.02 chance of a total loss of the car. If there is partial damage to the car, the amount [math]X[/math] of damage (in thousands) follows a distribution with density function
[[math]]
f(x) = \begin{cases}
0.5003e^{− x /2}, \, 0 \lt x \lt 15 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
Calculate the expected claim payment.
- 320
- 328
- 352
- 380
- 540
May 01'23
Solution: B
Let [math]Y[/math] denote the claim payment made by the insurance company. Then
[[math]]
Y = \begin{cases}
0 \quad \textrm{with probability 0.94} \\
\max(0,x-1) \quad \textrm{with probability 0.04} \\
14 \quad \textrm{with probability 0.02}
\end{cases}
[[/math]]
and
[[math]]
\begin{align*}
\operatorname{E}[Y] &= ( 0.94 )( 0 ) + ( 0.04 )( 0.5003)\int_1^{15} (x-1)e^{-x/2} dx + (0.02)(14) \\
&= 0.28 + ( 0.020012 ) \left [-2x^{-x/2} \Big |_1^{15} + 2 \int_1^{15}e^{-x/2} dx - \int_1^{15}e^{-x/2} dx \right ] \\
&= 0.28 + ( 0.020012 ) \left [-30e^{-7.5} + 2e^{-0.5} -2e^{-x/2} \Big |_1^{15} \right ] \\
&= 0.28 + ( 0.020012 ) \left [-30e^{-7.5} + 2e^{-0.5} -2e^{-7.5} + 2e^{-0.5} \right ] \\
&= 0.28 + ( 0.020012 ) \left [-32e^{-7.5} + 4e^{-0.5} \right ] \\
&= 0.28 + ( 0.020012 )( 2.408 ) \\
&= 0.328 \quad \textrm{(in thousands)}
\end{align*}
[[/math]]