BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X_1[/math], [math]X_2[/math], \dots, [math]X_n[/math] be [math]n[/math] independent random
variables each of which has an exponential density with mean [math]\mu[/math]. Let [math]M[/math] be the minimum value of the [math]X_j[/math]. Show that the density for [math]M[/math] is exponential with mean [math]\mu/n[/math]. Hint: Use cumulative distribution functions.