Exercise
For a fully discrete whole life insurance policy on (61), you are given:
(i) The annual gross premium using the equivalence principle is 500
(ii) Initial expenses, incurred at policy issue, are [math]15 \%[/math] of the premium
(iii) Renewal expenses, incurred at the beginning of each year after the first, are [math]3 \%[/math] of the premium
(iv) Mortality follows the Standard Ultimate Life Table
(v) [math]\quad i=0.05[/math]
Calculate the amount of the death benefit.
- 23,300
- 23,400
- 23,500
- 23,600
- 23,700
Answer: A
Let [math]B[/math] be the amount of death benefit.
[math]\mathrm{EPV}([/math] Premiums [math])=500 \ddot{a}_{61}=500(14.6491)=7324.55[/math]
[math]\mathrm{EPV}([/math] Benefits [math])=\mathrm{B} \cdot A_{61}=(0.30243) \mathrm{B}[/math]
[math]\operatorname{EPV}([/math] Expenses [math])=(0.12)(500)+(0.03)(500) \ddot{a}_{61}=(0.12)(500)+(0.03)(7324.55)=279.74[/math]
[math]\mathrm{EPV}([/math] Premiums [math])=\mathrm{EPV}([/math] Benefits [math])+\mathrm{EPV}([/math] Expenses [math])[/math]
[math]7324.55=(0.30243) \mathrm{B}+279.74[/math]
[math]7044.81=(0.30243) \mathrm{B}[/math]
[math]\mathrm{B}=23,294[/math]