Exercise
For a special whole life insurance policy issued on (40), you are given:
(i) Death benefits are payable at the end of the year of death
(ii) The amount of benefit is 2 if death occurs within the first 20 years and is 1 thereafter
(iii) [math]Z[/math] is the present value random variable for the payments under this insurance (iv) [math]\quad i=0.03[/math]
(v)
[math]x[/math] | [math]A_{x}[/math] | [math]{ }_{20} E_{x}[/math] |
---|---|---|
40 | 0.36987 | 0.51276 |
60 | 0.62567 | 0.17878 |
(vi) [math]\quad E\left[Z^{2}\right]=0.24954[/math]
Calculate the standard deviation of [math]Z[/math].
- 0.27
- 0.32
- 0.37
- 0.42
- 0.47
Answer: A
[math]E[Z]=2 \cdot A_{40}-{ }_{20} E_{40} A_{60}=(2)(0.36987)-(0.51276)(0.62567)=0.41892[/math]
[math]E\left[Z^{2}\right]=0.24954[/math] which is given in the problem.
[math]\operatorname{Var}(Z)=E\left[Z^{2}\right]-(E[Z])^{2}=0.24954-0.41892^{2}=0.07405[/math]
[math]S D(Z)=\sqrt{0.07405}=0.27212[/math]
An alternative way to obtain the mean is [math]E[Z]=2 A_{40: 20 \mid}^{1}+{ }_{20 \mid} A_{40}[/math]. Had the problem asked for the evaluation of the second moment, a formula is
[math]E\left[Z^{2}\right]=\left(2^{2}\right)\left({ }^{2} A_{40: 20}^{1}\right)+\left(v^{2}\right)^{20}\left({ }_{20} p_{40}\right)\left({ }^{2} A_{60}\right)[/math]