ABy Admin
Jan 19'24

Exercise

For a fully discrete, 5-payment 10 -year term insurance of 200,000 on (30), you are given:

(i) Mortality follows the Standard Ultimate Life Table

(ii) The following expenses are incurred at the beginning of each respective year:

Year 1 Years 2-10
Percent of Premium Per Policy Percent of Premium Per Policy
Taxes 5% 0 5% 0
Commissions 30% 0 10% 0
Maintenance 0% 8 0% 4

(iii) [math]\quad i=0.05[/math]

(iv) [math]\quad \ddot{a}_{30: 5}=4.5431[/math]

Calculate the annual gross premium using the equivalence principle.

  • 150
  • 160
  • 170
  • 180
  • 190

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jan 19'24

Answer: C

[[math]] \begin{aligned} & A P V(\text { expenses })=0.35 G+8+0.15 G a_{30: 4 \mid}+4 a_{30: 9]} \\ & =0.20 G+4+0.15 G \ddot{a}_{30: 51}+4 \ddot{a}_{30: 10} \end{aligned} [[/math]]


[math]G \ddot{a}_{30: 51}=0.20 G+4+0.15 G \ddot{a}_{30: 5]}+4 \ddot{a}_{30: 10 \mid}+200,000 A_{30: 10}^{1}[/math]

[math]G=\frac{200,000 A_{30: \overline{10}}^{1}+4+4 \ddot{a}_{30: \overline{10}}}{0.85 \ddot{a}_{30: 5 \mid}-0.20}[/math]

[math]200,000 A_{30: 10 \mid}^{1}=200,000\left[A_{30: 10 \mid}-{ }_{10} E_{30}\right][/math]

[math]=200,000(0.61447-0.61152)=590[/math]

[math]G=\frac{590+4+4(8.0961)}{0.85(4.5431)-0.20}=171.07[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00