BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Consider the Markov chain with transition matrix
[[math]]
\mat {P} = \pmatrix{ 1/2 & 1/3 & 1/6 \cr3/4 & 0 & 1/4 \cr 0 & 1 & 0}\ .
[[/math]]
- Show that this is a regular Markov chain.
- The process is started in state 1; find the probability that it is in state 3 after two steps.
- Find the limiting probability vector [math]\mat{w}[/math].