Jan 18'24
Exercise
For a 3-year term insurance of 1000 on (70), you are given:
(i) [math]\quad q_{70+k}^{\text {SULT }}[/math] is the mortality rate from the Standard Ultimate Life Table, for [math]k=0,1,2[/math]
(ii) [math]\quad q_{70+k}[/math] is the mortality rate used to price this insurance, for [math]k=0,1,2[/math]
(iii) [math]\quad q_{70+k}=(0.95)^{k} q_{70+k}^{S U L T}[/math], for [math]k=0,1,2[/math]
(iv) [math]i=0.05[/math]
Calculate the single net premium.
- 29.05
- 29.85
- 30.65
- 31.45
- 32.25
Jan 18'24
Answer: B
Time | Age | [math]q_{x}^{ ext {SULT }}[/math] | Improvement Factor | [math]q_{x}[/math] |
---|---|---|---|---|
0 | 70 | 0.010413 | [math]100.00 \%[/math] | 0.010413 |
1 | 71 | 0.011670 | [math]95.00 \%[/math] | 0.011087 |
2 | 72 | 0.013081 | [math]90.25 \%[/math] | 0.011806 |
[math]v=1 / 1.05=0.952381[/math]
[[math]]
\begin{aligned}
E P V & =1,000\left[0.010413 v+0.989587(0.011087) v^{2}+0.989587(0.988913)(0.011806) v^{3}\right] \\
& =29.85
\end{aligned}
[[/math]]