May 04'23
Exercise
The cumulative distribution function for health care costs experienced by a policyholder is modeled by the function
[[math]]
F(x) = \begin{cases}
1 - e^{-\frac{x}{100}}, \, x \gt 0 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
The policy has a deductible of 20. An insurer reimburses the policyholder for 100% of health care costs between 20 and 120. Health care costs above 120 are reimbursed at 50%. Let [math]G[/math] be the cumulative distribution function of reimbursements given that the reimbursement is positive.
Calculate [math]G(115)[/math].
- 0.683
- 0.727
- 0.741
- 0.757
- 0.777
May 04'23
Solution: B
Let Y be the reimbursement. Then, G(115) = P[Y < 115 | X > 20]. For Y to be 115, the costs must be above 120 (up to 120 accounts for a reimbursement of 100). The extra 15 requires 30 in additional costs. Therefore, we need
[[math]]
\begin{align*}
\operatorname{P}[X \leq 150 | X \gt 20] &= \frac{\operatorname{P}[X \leq 150] - \operatorname{P}[ X \leq 20]}{\operatorname{P}[X \leq 20]} \\ &
= \frac{1-e^{-150/100}-1 + e^{-20/100}}{1-1 + e^{-20/100}} \\
&= \frac{-e^{-1.5} + e^{-0.2}}{e^{-0.2}} \\
&= 1-e^{-1.3} \\
&= 0.727.
\end{align*}
[[/math]]