BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Show that
[[math]]
b(n,p,j) = \frac pq \left(\frac {n - j + 1}j \right) b(n,p,j - 1)\ ,
[[/math]]
for [math]j \ge 1[/math]. Use this fact to determine the value or values of [math]j[/math] which give [math]b(n,p,j)[/math] its greatest value. Hint: Consider the successive ratios as [math]j[/math] increases.