BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Suppose again that [math]Z = X + Y[/math]. Find [math]f_Z[/math] if
[[math]]
\begin{eqnarray*}
f_X(x) &=& \frac 1{\sqrt{2\pi}\sigma_1} e^{-(x - \mu_1)^2/2\sigma_1^2} \\
f_Y(x) &=& \frac 1{\sqrt{2\pi}\sigma_2} e^{-(x - \mu_2)^2/2\sigma_2^2}\ .
\end{eqnarray*}
[[/math]]