May 01'23
Exercise
The loss due to a fire in a commercial building is modeled by a random variable [math]X[/math] with density function
[[math]]
f(x) = \begin{cases}
0.005(20 − x), \, 0\lt x \lt 20 \\
0, \, \textrm{otherwise.}
\end{cases}
[[/math]]
Given that a fire loss exceeds 8, calculate the probability that it exceeds 16.
- 1/25
- 1/9
- 1/8
- 1/3
- 3/7
May 01'23
Solution: B
Note that
[[math]]
\begin{align*}
\operatorname{P}[X \gt x] = \int_x^{20} 0.005(20-t) dt &= 0.005 (20t - \frac{1}{2} t^2 ) \Big |_{t=0}^{20} \\
&= 0.005(400 - 200 - 20x + \frac{1}{2}x^2) \\
&= 0.005(200-20x + \frac{1}{2} x^2)
\end{align*}
[[/math]]
where [math] 0 \lt x \lt 20 [/math]. Therefore
[[math]]
\operatorname{P}[ X \gt 16 X \gt 8] = \frac{\operatorname{P}[ X \gt 16]}{\operatorname{P}[ X \gt 8]} = \frac{200 - 20(16) + \frac{1}{2}(16)^2}{200-20(8) + \frac{1}{2} (8)^2} = \frac{8}{72} = \frac{1}{9}.
[[/math]]