BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
A certain calculating machine uses only the digits 0 and 1. It is supposed to transmit one of these digits through several stages. However, at every stage, there is a probability [math]p[/math] that the digit that enters this stage will be changed when it leaves and a probability [math]q = 1 - p[/math] that it won't. Form a Markov chain to represent the process of transmission by taking as states the digits 0 and 1. What is the matrix of transition probabilities?