May 13'23
Exercise
You are given:
- Losses follow an exponential distribution with the same mean in all years.
- The loss elimination ratio this year is 70%.
- The ordinary deductible for the coming year is 4/3 of the current deductible.
Calculate the loss elimination ratio for the coming year.
- 70%
- 75%
- 80%
- 85%
- 90%
May 13'23
Key: C
[math]\mathrm{LER}=\frac{\operatorname{E}(X \wedge d)}{\operatorname{E}(X)}=\frac{\theta\left(1-e^{-d / \theta}\right)}{\theta}=1-e^{-d / \theta}[/math]
Last year: [math]\quad 0.70=1-e^{-d / \theta} \Rightarrow-d=\theta \log (0.30)[/math]
Next year: [math]\quad-d_{\text {new }}=\theta \log \left(1-\mathrm{LER}_{\text {new }}\right)[/math]
Hence [math]\theta \log \left(1-\mathrm{LER}_{\text {new }}\right)=-d_{\text {new }}=\frac{4}{3} \theta \log (0.30)[/math]
[math]\log \left(1-\mathrm{LER}_{\text {new }}\right)=-1.6053[/math]
[math]\left(1-\mathrm{LER}_{\text {new }}\right)=e^{-1.6053}=0.20[/math]
[math]\mathrm{LER}_{\text {new }}=0.80[/math]