May 07'23
Exercise
The distribution of [math]Y[/math], given [math]X[/math] , is uniform on the interval [0, [math]X[/math]]. The marginal density of [math]X[/math] is
[[math]]
f(x) = \begin{cases}
2x, \, 0 \lt x \lt 1 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
Determine the conditional density of [math]X[/math] , given [math]Y = y[/math] where positive.
- 1
- 2
- 2x
- 1/y
- 1/(1-y)
May 07'23
Solution: E
The support of (X,Y) is 0 < y < x < 1.
[[math]]
f_{X,Y}(x.y) = f(y |x) f_X(x) = 2 \quad \textrm{on that support.}
[[/math]]
It is clear geometrically (a flat joint density over the triangular region 0 < y < x < 1) that when [math]Y = y [/math] we have [math]X \sim U(y,1) [/math] so that
[[math]]
f(x |y ) = \frac{1}{1-y} \quad \textrm{for} \quad y \lt x \lt 1.
[[/math]]
By computation:
[[math]]
f_Y(y) = \int_y^1 2dx = 2-2y \Rightarrow f(x | y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{2}{2-2y} = \frac{1}{1-y} \quad \textrm{for} \quad y \lt x \lt 1
[[/math]]