May 14'23
Exercise
The unlimited severity distribution for claim amounts under an auto liability insurance policy is given by the cumulative distribution:
[[math]]
F(x) = 1-0.8e^{-0.02x} - 0.2e^{-0.001x}, \, x \geq 0
[[/math]]
The insurance policy pays amounts up to a limit of 1000 per claim.
Calculate the expected payment under this policy for one claim.
- 57
- 108
- 166
- 205
- 240
May 14'23
Key: C
Limited expected value =
[[math]]
\begin{aligned}
&\int_{0}^{1000}[1 − F ( x)]dx = \int_{0}^{1000} 0.8e^{-0.02x} + 0.2e^{-0.001x}dx \\
&= -40e^{-0.02x} - 200e^{-0.001x} \Big |_0^{1000} \\
&= −0 − 73.576 + 40 + 200 \\
&= 166.424
\end{aligned}
[[/math]]