BBy Bot
May 31'24

Exercise

[math] \newcommand{\smallfrac}[2]{\frac{#1}{#2}} \newcommand{\medfrac}[2]{\frac{#1}{#2}} \newcommand{\textfrac}[2]{\frac{#1}{#2}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\e}{\operatorname{e}} \newcommand{\B}{\operatorname{B}} \newcommand{\Bbar}{\overline{\operatorname{B}}} \newcommand{\pr}{\operatorname{pr}} \newcommand{\dd}{\operatorname{d}} \newcommand{\E}{\operatorname{E}} \newcommand{\V}{\operatorname{V}} \newcommand{\Cov}{\operatorname{Cov}} \newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}} \newcommand{\ran}{\operatorname{ran}} \newcommand{\card}{\#} \renewcommand{\P}{\operatorname{P}} \renewcommand{\L}{\operatorname{L}} \newcommand{\mathds}{\mathbb}[/math]

The table below contains actual heights sampled from adults aged 40-49 years in the U.S. The numbers represent the percentage that has height less than the value in the top row of the same column and larger than the value in the row left of it [Notes 1].

Sample of heights of adult U.S. citizens.
147.32 149.86 152.40 154.94 157.48 160.02 162.56 165.10 167.64 170.18
Women 1.6 3.4 5.8 9.0 11.0 15.2 12.0 14.2 10.8 8.2
Men 0 0 0 0 1.9 1.9 1.8 4.2 9.6 10.9
172.72 175.26 177.80 180.34 182.88 185.42 187.96 190.50 193.04 195.58
Women 3.5 3.1 1.6 0.1 0 0 0 0 0.5 0
Men 10.1 14.0 15.2 9.5 8.3 5.1 5.2 1.3 0.4 0.5

Try with our algorithm (of which we know that it works in high dimensions) to separate the 1-dimensional data set.

Notes