May 01'23
Exercise
An insurance policy pays 100 per day for up to three days of hospitalization and 50 per day for each day of hospitalization thereafter. The number of days of hospitalization, [math]X[/math], is a discrete random variable with probability function
[[math]]
\operatorname{P}[X=k] = \begin{cases}
\frac{6-k}{15}, \, k =1,2,3,4,5 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
Determine the expected payment for hospitalization under this policy.
- 123
- 210
- 220
- 270
- 367
May 01'23
Solution: C
If [math]k[/math] is the number of days of hospitalization, then the insurance payment [math]g(k)[/math] is
[[math]]
g(k) = \begin{cases}
100k, \quad k =1,2,3 \\
300 + 50(k-3), \quad k =4,5.
\end{cases}
[[/math]]
Thus, the expected payment is
[[math]]
\begin{align*}
\sum_{k=1}^5 g(k)p_k &= 100 p_1 + 200 p_2 + 300 p_3 + 350 p_4 + 400 p_5 \\
&= \frac{1}{15}(100 × 5 + 200 × 4 + 300 × 3 + 350 × 2 + 400 × 1) \\
&= 220.
\end{align*}
[[/math]]