ABy Admin
May 07'23
Exercise
A joint density function is given by
[[math]]
f(x,y) = \begin{cases}
kx, \,\, 0 \lt x \lt 1 \,\, \textrm{and} \,\, 0 \lt y \lt 1 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
where [math]k[/math] is a constant. Calculate [math]\operatorname{Cov}(X,Y)[/math].
- -1/6
- 0
- 1/9
- 1/6
- 2/3
ABy Admin
May 07'23
Solution: B
Define [math]g(x) = kx [/math] and [math]h(y) = 1 [/math]. Then [math]f(x,y) = g(x) h(x) [/math]. In other words, [math]f(x,y)[/math] can be written as the product of a function of [math]x[/math] alone and a function of [math]y[/math] alone. It follows that [math]X[/math] and [math]Y[/math] are independent. Therefore, [math]\operatorname{Cov}[X, Y] = 0.[/math]