BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
The velocity [math]v[/math] of a freely falling body depends on the distance [math]s[/math] that it has fallen according to the equation [math]v = \sqrt{2gs}[/math], where [math]g[/math] is the constant gravitational acceleration.
- lab{1.3.7a} Using an [math]s[/math]-axis and a [math]v[/math]-axis, plot the dependent variable [math]v[/math] as a function of the independent variable [math]s[/math].
- lab{1.3.7b} If [math]s[/math] depends on the time [math]t[/math] according to the equation [math]s=\frac12gt^2[/math], how does [math]v[/math] depend on [math]t[/math]?
Note that the variable [math]v[/math] in \ref{ex1.3.7a}, which depends on [math]s[/math], is not the same function as the variable [math]v[/math] in \ref{ex1.3.7b}, which depends on [math]t[/math]. Without knowing which is referred to, the meaning of the value of [math]v[/math] at 2 is ambiguous.