BBy Bot
Nov 03'24

Exercise

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Use the Midpoint Rule with [math]n=4[/math] to compute approximations to the following integrals. In \ref{ex8.3.1a}, \ref{ex8.3.1b}, \ref{ex8.3.1c}, \ref{ex8.3.1d}, and \ref{ex8.3.1e} compare the result obtained with the true value.

  • lab{8.3.1a} [math]\int_0^1 (x^2+1)\;dx[/math]
  • lab{8.3.1b} [math]\int_{-1}^3 (6x-5)\;dx[/math]
  • lab{8.3.1c} [math]\int_1^3 \frac1{x^2} dx[/math]
  • lab{8.3.1d} [math]\int_0^3 \frac1{1+x} dx[/math]
  • lab{8.3.1e} [math]\int_0^3 \sqrt{1+x}\;dx[/math]
  • [math]\int_0^{2\pi} \sin^2x\;dx[/math]
  • [math]\int_0^1 e^{-x^2} dx[/math]
  • lab{8.3.1h} [math]\int_0^1 \sqrt{1+x^3}\; dx[/math].