BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Use the Midpoint Rule with [math]n=4[/math] to compute approximations to the following integrals. In \ref{ex8.3.1a}, \ref{ex8.3.1b}, \ref{ex8.3.1c}, \ref{ex8.3.1d}, and \ref{ex8.3.1e} compare the result obtained with the true value.
- lab{8.3.1a} [math]\int_0^1 (x^2+1)\;dx[/math]
- lab{8.3.1b} [math]\int_{-1}^3 (6x-5)\;dx[/math]
- lab{8.3.1c} [math]\int_1^3 \frac1{x^2} dx[/math]
- lab{8.3.1d} [math]\int_0^3 \frac1{1+x} dx[/math]
- lab{8.3.1e} [math]\int_0^3 \sqrt{1+x}\;dx[/math]
- [math]\int_0^{2\pi} \sin^2x\;dx[/math]
- [math]\int_0^1 e^{-x^2} dx[/math]
- lab{8.3.1h} [math]\int_0^1 \sqrt{1+x^3}\; dx[/math].