May 07'23
Exercise
An insurance policy is written to cover a loss [math]X[/math] where [math]X[/math] has density function
[[math]]
f(x) = \begin{cases}
\frac{3}{8}x^2, \, 0 \leq x \leq 2 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
The time (in hours) to process a claim of size [math]x[/math], where [math]0\lt x \lt 2[/math] , is uniformly distributed on the interval from [math]x[/math] to [math]2x[/math].
Calculate the probability that a randomly chosen claim on this policy is processed in three hours or more.
- 0.17
- 0.25
- 0.32
- 0.58
- 0.83
May 07'23
Solution: A
We are given that [math]X[/math] denotes loss. In addition, denote the time required to process a claim by T.
Then the joint pdf of [math]X[/math] and [math]T[/math] is
[[math]]
f(x,t) = \begin{cases} \frac{3}{x}x^2 \frac{1}{x} = \frac{3}{8}x, \, x \lt t \lt 2x, 0 \leq x \leq 2 \\ 0, \, \textrm{otherwise} \end{cases}
[[/math]]
Now we can find
[[math]]
\begin{align*}
P[T \geq 3] = \int_2^4 \int_{t/2}^2 \frac{3}{8} x dx dt = \int_3^4 \left[ \frac{3}{16}x^2\right]_{t/2}^2 dt &= \int_3^4 \left( \frac{12}{16} - \frac{3}{64}t^2\right) dt\\
&= \left [ \frac{12}{16} - \frac{1}{64}t^3\right ]_3^4 \\
&= \frac{12}{4} - 1 - \left( \frac{36}{16} - \frac{27}{64}\right) \\
&= \frac{11}{64} = 0.17
\end{align*}
[[/math]]