ABy Admin
May 06'23
Exercise
An employer provides disability benefits to its employees for work-related and other injuries. The random variables [math]X[/math] and [math]Y[/math] denote the employer’s annual expenditures for work-related and other injuries, respectively. An actuarial study reveals the following information about [math]X[/math] and [math]Y[/math]:
- The density of [math]X[/math] is [math]f(x)= \frac{1}{20 \sqrt{5}} e^{-x/(20 \sqrt{5})}, \, x \gt 0[/math]
- [math]\operatorname{Var}(Y)=12500 [/math]
- The correlation between [math]X[/math] and [math]Y[/math] is 0.20.
Calculate the variance of the employer’s total expenditures for work-related and other injuries.
- 12,500
- 13,500
- 15,500
- 16,500
- 18,972
ABy Admin
May 06'23
Solution: D
X follows an exponential distribution with mean [math]20 \sqrt{5}[/math] and variance [math](20 \sqrt{5})^2 = 2000.[/math] Then,
[[math]]
\operatorname{Cov} [ X , Y ] = \operatorname{Var} [ X ] = \operatorname{Var} [Y ] \operatorname{Corr} [ X , Y ] = \sqrt{2000} \sqrt{12500} ( 0.2 ) = 1000 .
[[/math]]
It follows that
[[math]]
\operatorname{Var} [ X + Y ]= \operatorname{Var} [ X ] + \operatorname{Var} [Y ] + 2\operatorname{Cov} [ X , Y ]= 2000 + 12,500 + 2 (1000 )= 16,500 .
[[/math]]