May 05'23
Exercise
You are given the following information about [math]N[/math], the annual number of claims for a randomly selected insured:
[[math]]
\operatorname{P}[N = 0] = \frac{1}{2}, \, \operatorname{P}[N = 1] = \frac{1}{3}, \, \operatorname{P}[N \gt1] = \frac{1}{6}
[[/math]]
Let [math]S[/math] denote the total annual claim amount for an insured. When [math]N = 1 [/math], [math]S[/math] is exponentially distributed with mean 5. When [math]N \gt 1 [/math], [math]S[/math] is exponentially distributed with mean 8.
Calculate [math]\operatorname{P}(4 \lt S \lt 8) [/math]
- 0.04
- 0.08
- 0.12
- 0.24
- 0.25
May 06'23
Solution: C
Observe
[[math]]
\begin{align*}
\operatorname{P}[ 4 \lt S \lt 8] &= \operatorname{P}[ 4 \lt S \lt 8 | N = 1] \operatorname{P}[ N = 1] + \operatorname{P}[ 4 \lt S \lt 8 | N \gt 1] \operatorname{P}[ N \gt 1] \\
&= \frac{1}{3}(e^{-4/5} - e^{-8/5}) + \frac{1}{6} \left( e^{-1/2} - e^{-1}\right) \\
&= 0.122.
\end{align*}
[[/math]]