BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Using Theorem \ref{thm 11.4.4}, which gives the general real-valued solution of the [math]n[/math]th-order differential equation [math]p(D)y=0[/math], solve each of the following.
- [math](D-2)(D+1)^2y=0[/math]
- [math]\deriv3y - 7\dydx + 6y = 0[/math]
- [math](D-3)^2(D+1)(D-5)y=0[/math]
- [math]D(D^2+3D-4)y=0[/math]
- [math](D+2)^3(D-1)y=0[/math]
- [math](D+3)^2(D^2+3)y=0[/math]
- [math]\deriv3y + \deriv2y - 2\dydx = 0[/math]
- [math](D^2+2D+2)^2y=0[/math]
- [math](D+1)(D^2+2D+2)^2y=0[/math]
- [math]D^2(D^2+2D+2)^2y=0[/math]
- [math]\deriv4y - 81y = 0[/math]
- [math]\deriv3y+\deriv2y+\dydx+y=0[/math].