Exercise
For a fully discrete whole life insurance of 1000 on [math](x)[/math], you are given:
(i) The following expenses are incurred at the beginning of each year:
Year 1 | Years 2+ | |
---|---|---|
Percent of premium | [math]75 \%[/math] | [math]10 \%[/math] |
Maintenance expenses | 10 | 2 |
(ii) An additional expense of 20 is paid when the death benefit is paid
(iii) The gross premium is determined using the equivalence principle
(iv) [math]\quad i=0.06[/math]
(v) [math]\quad \ddot{a}_{x}=12.0[/math]
(vi) [math]{ }^{2} A_{x}=0.14[/math]
Calculate the variance of the loss at issue random variable.
- 14,600
- 33,100
- 51,700
- 70,300
- 88,900
Answer: E
1,020 in the solution is the 1,000 death benefit plus the 20 death benefit claim expense.
[math]G \ddot{a}_{x}=1,020 A_{x}+0.65 G+0.10 G \ddot{a}_{x}+8+2 \ddot{a}_{x}[/math]
[math]G=\frac{1,020 A_{x}+8+2 \ddot{a}_{x}}{\ddot{a}_{x}-0.65-0.10 \ddot{a}_{x}}=\frac{1,020(0.320755)+8+2(12.0)}{12.0-0.65-0.10(12.0)}=35.38622[/math]
Let [math]Z=v^{K_{x}+1}[/math] denote the present value random variable for a whole life insurance of 1 on [math](x)[/math].
Let [math]Y=\ddot{a}_{\overline{K_{x}+1}}[/math] denote the present value random variable for a life annuity-due of 1 on [math](x)[/math].
[math]\operatorname{Var}(L)=\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right]\left(1,020+\frac{0.9 G-2}{d}\right)^{2}[/math]