May 14'23
Exercise
The random variable [math]X[/math] represents the random loss, before any deductible is applied, covered by an insurance policy. The probability density function of [math]X[/math] is
[[math]]
f(x) = 2x, \, 0 \lt x \lt 1.
[[/math]]
Payments are made subject to a deductible, [math]d[/math], where 0 < [math]d[/math] < 1.
The probability that a claim payment is less than 0.5 is equal to 0.64.
Calculate the value of [math]d[/math].
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
May 14'23
Key: C
[[math]]
F(x) = \int_0^{x} 2ydy = x^2.
[[/math]]
Let [math]C[/math] be a random claim payment. Then [math]C = 0 [/math] if [math]X \lt d [/math] and [math]C = X-d [/math] if [math]X \geq d [/math]. Then,
[[math]]
\begin{aligned}
\operatorname{P}(C \lt 0.5) = 0.64 \\
\operatorname{P}(C \geq 0.5) = 0.64 \\
\operatorname{P}( X − d \geq 0.5) = 0.36 \\
\operatorname{P}( X \geq 0.5 + d ) = 0.36 \\
F (0.5 + d ) = 0.64 \\
(0.5 + d )^ 2 = 0.64 \\
0.5 + d = 0.8 \\
d = 0.3 \\
\end{aligned}
[[/math]]