ABy Admin
May 01'23
Exercise
A random variable [math]X[/math] has the cumulative distribution function
[[math]]
F(x) = \begin{cases}
0, \, x \lt 1 \\
\frac{x^2-2x +2}{2}, \, 1 \leq x \lt 2 \\
1, \, x \geq 2.
\end{cases}
[[/math]]
Calculate the variance of [math]X[/math].
- 7/72
- 1/8
- 5/36
- 4/3
- 23/12
ABy Admin
May 01'23
Solution: C
First note that the distribution function jumps ½ at x = 1, so there is discrete probability at that point. From 1 to 2, the density function is the derivative of the distribution function, x – 1. Then,
[[math]]
\begin{align*}
\operatorname{E}(X) = \frac{1}{2} + \int_{1}^2 x(x-1) dx = \frac{1}{2} + \int_{1}^2 (x^2-x) dx &= \frac{1}{2} + (\frac{1}{3}x^3 - \frac{1}{2} x^2) \Big |_1^2 \\
&= 1/2 + 8/3 - 4/2 - 1/3 + 1/2 \\ &= 7/3 -1 = 4/3
\end{align*}
[[/math]]
[[math]]
\begin{align*}
\operatorname{E}(X^2) = \frac{1}{2} + \int_{1}^2 x^2(x-1) dx = \frac{1}{2} + \int_{1}^2 (x^3-x^2) dx &= \frac{1}{2} + (\frac{1}{4}x^4 - \frac{1}{3} x^3) \Big |_1^2 \\
&= 1/2 +16/4 - 8/3 - 1/4 + 1/3 \\ &= 17/4 -7/3 \\ &= 23/12
\end{align*}
[[/math]]
[[math]]
\operatorname{Var}(X) = \operatorname{E}[X^2] - (\operatorname{E}[X])^2 = \frac{23}{12} - \left( \frac{4}{3} \right)^2 = \frac{23}{12} - \frac{16}{9} = \frac{5}{36}
[[/math]]