BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
For each of the following parametrizations and values of [math]t_0[/math], compute [math]P(t_0)[/math] and the derived vector [math]\vec dP(t_0)[/math]. Draw the parametrized curve and each of the tangent vectors [math]\vec dP(t_0)[/math] to the curve.
- [math]P(t) = (x(t),y(t)) = (t-1,t^2), \quad -\infty \lt t \lt \infty[/math]; [math]t_0 = -1[/math], [math]t_0 = 0[/math], and [math]t_0 = 2[/math].
- [math]P(t) = (x(t),y(t)) = (t^2+1,t-1), \quad -\infty \lt t \lt \infty[/math]; [math]t_0 = -1[/math], [math]t_0 = 0[/math], and [math]t_0 = 1[/math].
- [math]P(t) = (t-1,t^3), \quad -\infty \lt t \lt \infty[/math]; [math]t_0 = 0[/math], [math]t_0 = 1[/math], and [math]t_0 = 2[/math].
- [math]P(t) = (x,y) = (e^t,t), \quad -\infty \lt t \lt \infty[/math]; [math]t_0 = 0[/math] and [math]t_0 = \ln2[/math].
- [math]P(t) = (3\cos t,2\sin t), \quad -\infty \lt t \lt \infty[/math]; [math]t_0 = 0[/math], [math]t_0 = \frac\pi4[/math], and [math]t_0 = \frac\pi2[/math].
- [math]P(t) = (x(t),y(t)) = (t-1,t^2), \quad -\infty \lt t \lt \infty[/math]; [math]t_0 = -1[/math], [math]t_0 = 0[/math], and [math]t_0 = 2[/math].
- [math]P(t) = (t^2,t^3), \quad -\infty \lt t \lt \infty[/math]; [math]t_0 = -1[/math], [math]t_0 = 0[/math], and [math]t_0 = 2[/math].
- [math]P(t) = (t-1,2t+4), \quad -2 \leq t \leq 2[/math]; [math]t_0 = -1[/math], [math]t_0 = 0[/math], and [math]t_0 = 1[/math].