BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Find the arc lengths of the following parametrized curves.
- [math]\dilemma{x = t+1,} {y = t^{\frac32}, & \mbox{from [/math](2,1)[math] to [/math](5,8)[math].}}[/math]
- [math]\dilemma{x = t^2,} {y = \frac23 (2t+1)^\frac32, & \mbox{from [/math]\left(x(0),y(0)\right) = (0, \frac23)[math] to to [/math]\left(x(4), y(4)\right) = (16,18)[math].}}[/math]
- [math]P(t) = (t^2, t^3)[/math], \quad from [math]P(0)[/math] to [math]P(2)[/math].
- [math]\dilemma{x(\theta) = a \cos^3\theta, & a \gt 0,} {y(\theta) = a \sin^3\theta, & \mbox{from [/math]\left(x(0), y(0)\right) = (a,0)[math] to [/math]\left(x(\frac{\pi}2), y(\frac{\pi}2)\right) = (0,a)[math].}}[/math]