Exercise
[math] \require{textmacros} \def \bbeta {\bf \beta} \def\fat#1{\mbox{\boldmath$#1$}} \def\reminder#1{\marginpar{\rule[0pt]{1mm}{11pt}}\textbf{#1}} \def\SSigma{\bf \Sigma} \def\ttheta{\bf \theta} \def\aalpha{\bf \alpha} \def\ddelta{\bf \delta} \def\eeta{\bf \eta} \def\llambda{\bf \lambda} \def\ggamma{\bf \gamma} \def\nnu{\bf \nu} \def\vvarepsilon{\bf \varepsilon} \def\mmu{\bf \mu} \def\nnu{\bf \nu} \def\ttau{\bf \tau} \def\SSigma{\bf \Sigma} \def\TTheta{\bf \Theta} \def\XXi{\bf \Xi} \def\PPi{\bf \Pi} \def\GGamma{\bf \Gamma} \def\DDelta{\bf \Delta} \def\ssigma{\bf \sigma} \def\UUpsilon{\bf \Upsilon} \def\PPsi{\bf \Psi} \def\PPhi{\bf \Phi} \def\LLambda{\bf \Lambda} \def\OOmega{\bf \Omega} [/math]
Consider a pathway comprising of three genes called [math]A[/math], [math]B[/math], and [math]C[/math]. Let random variables [math]Y_{i,a}[/math], [math]Y_{i,b}[/math], and [math]Y_{i,c}[/math] be the random variable representing the expression of levels of genes [math]A[/math], [math]B[/math], and [math]C[/math] in sample [math]i[/math]. Hundred realizations, i.e. [math]i=1, \ldots, n[/math], of [math]Y_{i,a}[/math], [math]Y_{i,b}[/math], and [math]Y_{i,c}[/math] are available from an observational study. In order to assess how the expression levels of gene [math]A[/math] are affect by that of genes [math]B[/math] and [math]C[/math] a medical researcher fits the
with [math]\varepsilon_i \sim \mathcal{N}(0, \sigma^2)[/math]. This model is fitted by means of ridge regression, but with a separate penalty parameter, [math]\lambda_{b}[/math] and [math]\lambda_{c}[/math], for the two regression coefficients, [math]\beta_b[/math] and [math]\beta_c[/math], respectively.
- Write down the ridge penalized loss function employed by the researcher.
- Does a different choice of penalty parameter for the second regression coefficient affect the estimation of the first regression coefficient? Motivate your answer.
- The researcher decides that the second covariate [math]Y_{i,c}[/math] is irrelevant. Instead of removing the covariate from model, the researcher decides to set [math]\lambda_{c} = \infty[/math]. Show that this results in the same ridge estimate for [math]\beta_b[/math] as when fitting (again by means of ridge regression) the model without the second covariate.