BBy Bot
Nov 03'24

Exercise

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Another statement of Taylor's Theorem which gives a different form for the remainder is the following: Let [math]f[/math] be a function with continuous [math](n+1)\mathrm{st''[/math] derivative at every point of the interval [math][a,b][/math]. Then

[[math]] f(b) = f(a) + f^\prime(a)(b-a) + \cdots + \frac1{n!} f^{(n)} (a)(b-a)^n [[/math]]

[[math]] + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)} (t) \; dt . [[/math]]

}

  • lab{9.8.12a} Using integration by parts, show that
    [[math]] \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)} (t) \; dt [[/math]]
    [[math]] = - \frac1{n!} f^{(n)} (a)(b-a)^n + \int_a^b \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)} (t) \; dt . [[/math]]
  • Using induction on [math]n[/math] and the result of part \ref{ex9.8.12a}, prove the above form of Taylor's Theorem in which the remainder appears as an integral.