BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Find the general solution of each of the following differential equations.
- [a [math]\dydx = x^3 + 2e^x[/math]
- [math]x\dydx = 6x^3 +5x +1[/math]
- [math]\dydx = (y^2+1)(2x+3)[/math]
- [math]\dydx = xy + x[/math]
- [math]2xy^2 + \dydx - 4x^3y^2 = 0[/math]
- [math]y\dydx = \ln x[/math]
- [math]x\dydx = \ln x[/math]
- [math]\dydx + 16y = 0[/math]
- [math]\deriv2y + 16y = 0[/math]
- [math]\deriv2y = 16y[/math]
- [math]y^{\prime\prime} - 19y^{\prime} - 20y = 0[/math]
- [math](D^2 + 10D + 16)y = 0[/math]
- [math]2\deriv2y - 14\dydx = -20y[/math]
- [math]\deriv2y + a^2y = 2a\dydx[/math]
- [math](D^2 + 4D + 29)y = 0[/math]
- [math](y+5)\dydx = 7x - e^{-x}[/math]
- [math]\dydx = \frac xy[/math]
- [math]\dydx = \frac yx[/math]
- [math]\dydx = -\frac xy[/math]
- [math]\frac1y \deriv2y = 49[/math]
- [math](3x+4)\;dt + (4t+3)\;dx = 0[/math]
- [math]\dydx = \cot y[/math]
- [math]\frac1t \nxder{}yt = e^{3t^2+4}[/math]
- [math]\dydx = 3 \sin^2 x \cos^2 x[/math]
- [math]\dydx = 3 \sin^2 x \cos^2 y[/math]
- [math]\deriv2y = 6x^2 - 4x + 2[/math].