May 01'23
Exercise
An insurance policy reimburses a loss up to a benefit limit of 10. The policyholder’s loss, [math]Y[/math], follows a distribution with density function:
[[math]]
f(y) = \begin{cases}
2y^{-3}, \, y \gt 1 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
Calculate the expected value of the benefit paid under the insurance policy.
- 1.0
- 1.3
- 1.8
- 1.9
- 2.0
May 01'23
Solution: D
Let [math]W[/math] denote claim payments. Then
[[math]]
W = \begin{cases}
y, \quad 1 \lt y \lt 10 \\
10, \quad y \leq 10
\end{cases}
[[/math]]
It follows that
[[math]]
\operatorname{E}[W] = \int_1^{10} y \frac{2}{y^3} dy + \int_{10}^{\infty} 10 \frac{2}{y^3} dy = -\frac{2}{y} \Big |_1^{10} - \frac{10}{y^2} \Big |_{10}^{\infty} = 1.9.
[[/math]]