May 01'23
Exercise
A man purchases a life insurance policy on his 40th birthday. The policy will pay 5000 if he dies before his 50th birthday and will pay 0 otherwise. The length of lifetime, in years from birth, of a male born the same year as the insured has the cumulative distribution function
[[math]]
F(t) = \begin{cases}
1-\exp(\frac{1-1.1^t}{1000}), \, t \gt 0 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
Calculate the expected payment under this policy.
- 333
- 348
- 421
- 549
- 574
May 01'23
Solution: B
[[math]]
\begin{align*}
\operatorname{P}(\textrm{40 year old man dies before age 50}) &= \operatorname{P}(T \lt 50 | T \gt 40) \\ &= \frac{\operatorname{P}(40 \lt T \lt 50)}{\operatorname{P}(T \gt 40)} \\
&= \frac{F (50) − F (40)}{1 − F (40)} \\
&= \frac{ \exp(\frac{1-1.1^{40}}{1000}) -\exp(\frac{1-1.1^{50}}{1000}) }{1-1 + \exp(\frac{1-1.1^{40}}{1000})} \\
&= \frac{0.9567 − 0.8901}{0.9567} \\
&= 0.0696.
\end{align*}
[[/math]]
And the expected benefit equals 5000(0.0696) = 348.