Uniform integrability
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. A family [math](X_i)_{i\in I}[/math] of r.v.'s in [math]L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)[/math], indexed by an arbitrary index set [math]I[/math], is called uniformly integrable (denoted by u.i.) if
A singel r.v. in [math]L^1(\Omega,\F,(\F_n)_{n\geq0},\p)[/math] is always u.i. (this follows from dominated convergence). If [math]\vert I\vert \lt \infty[/math], then using
Example
Let [math]Z\in L^1(\Omega,\F,(\F_n)_{n\geq0},\p)[/math]. Then the family
is u.i. Indeed, we have
Example
Let [math]\phi:\R_+\to\R_+[/math] be a measurable map, such that
Then for all [math]C \gt 0[/math], the family
is u.i. Indeed, for [math]a[/math] large enough, we have
Thus
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math](X_i)_{i\in I}[/math] be a family of r.v.'s bounded in [math]L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)[/math], i.e. [math]\sup_{i\in I}\E[\vert X_i\vert] \lt \infty[/math]. Then [math](X_i)_{i\in I}[/math] is u.i. if and only if for all [math]\varepsilon \gt 0[/math] there is a [math]\delta \gt 0[/math] such that for all [math]\A\in \F[/math], if [math]\p[A] \lt \delta[/math] then [math]\sup_{i\in I}\E[\vert X_i\vert \one_A] \lt \varepsilon[/math].
For the right implication, let [math]\varepsilon \gt 0[/math]. Then there exists [math]a \gt 0[/math] such that
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math]X[/math] be a bounded r.v., i.e. [math]X\in L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)[/math]. Then the family
Let [math]\varepsilon \gt 0[/math]. Then there exists a [math]\delta \gt 0[/math] such that for all [math]A\in \F[/math], if [math]\p[A] \lt \delta[/math] then [math]\E[\vert X\vert \one_A] \lt \varepsilon[/math]. Then for all [math]a \gt 0[/math], we have
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math](X_n)_{n\geq 0}[/math] be a sequence of r.v.'s in [math]L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)[/math], which converges in probability to [math]X_\infty[/math]. Then [math]X_n\xrightarrow{n\to\infty\atop L^1}X_\infty[/math] if and only if [math](X_n)_{n\geq 0}[/math] is u.i.
For the right implication, we first note that [math](X_n)_{n\geq 0}[/math] is bounded in [math]L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)[/math] since it converges in [math]L^1[/math]. For [math]\varepsilon \gt 0[/math], there exists [math]N\in\N[/math] such that for [math]n\geq N[/math] we get
Next we note that [math]\{X_0,X_1,...,X_N\}[/math] is u.i. since it is a finite family of bounded r.v.'s. Therefore, there exists a [math]\delta \gt 0[/math], such that for all [math]A\in\F[/math], if [math]\p[A] \lt \delta[/math] then [math]\E[\vert X_n\vert\one_A] \lt \frac{\varepsilon}{2}[/math] for all [math]n\in\{0,1,...,N\}[/math]. Finally for [math]n\geq N[/math], we get
For the left implication, we note that if [math](X_n)_{n\geq 0}[/math] is u.i., then the family [math](X_n-X_m)_{(n,m)\in\N^2}[/math] is also u.i. since
Combining all our previous results, we have; if [math](X_n)_{n\geq 0}[/math] is a martingale, then the following are equivalent
- [math](X_n)_{n\geq 0}[/math] converges a.s. and in [math]L^1[/math].
- [math](X_n)_{n\geq 0}[/math] is u.i.
- [math](X_n)_{n\geq 0}[/math] is regular and [math]X_n=\E[X_\infty\mid \F_n][/math] a.s.
General references
Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].