Stopping theorems
If [math]S\leq T[/math] are two bounded stopping times and [math](X_n)_{n\geq 0}[/math] a martingale, then
If [math](X_n)_{n\geq 0}[/math] is an adapted process, which converges a.s. to [math]X_\infty[/math], we can define [math]X_T[/math] for all stopping times (finite or not) by
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math](X_n)_{n\geq 0}[/math] be u.i. martingale. Then for any stopping time [math]T[/math], we have that
We first want to check that [math]X_T[/math] is in [math]L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)[/math]. Therefore we have
Now let [math]A\in\F_T[/math]. Then
where we have used that [math]X_\infty\in L^1(\Omega,\F_\infty,(\F_n)_{n\geq 0},\p)[/math] and Fubini for the first and last equation. Now since [math]X_T[/math] is [math]\F_T[/math]-measurable, we get that [math]\E[X_\infty\mid \F_T]=X_T[/math] a.s. Finally for [math]S\leq T[/math], we have [math]\F_S\subset\F_T[/math] and thus
If [math](X_n)_{n\geq 0}[/math] is a u.i. martingale, then the family
Example
[Another random walk] Consider a simple random walk with [math]X_0=k\geq 0[/math]. Let [math]m\geq 0[/math], [math]0\leq k\leq m[/math] and
with [math]X_n=k+Y_1+\dotsm +Y_n[/math], where [math](Y_n)_{n\geq 1}[/math] are iid and [math]\p[Y_n=\pm 1]=\frac{1}{2}[/math]. We have already seen that [math]T \lt \infty[/math] a.s. Now let [math]Z_n=X_{n\land T}[/math]. Then [math](Z_n)_{n\geq 0}[/math] is a martingale and [math]0\leq Z_n\leq m[/math]. Therefore, [math](Z_n)_{n\geq 0}[/math] is u.i. and hence [math]Z_n[/math] converges a.s. and in [math]L^1[/math] to [math]Z_\infty[/math] with
Moreover,
which implies that [math]\p[X_T=m]=\frac{k}{m}[/math] and thus [math]\p[X_T=0]=1-\p[X_T=m]=\frac{m-k}{m}[/math].
Now let us assume that [math]\p[Y_n=1]=p[/math] and [math]\p[Y_n=-1]=1-p=q[/math] for [math]p\in (0,1)[/math] and [math]p\not=\frac{1}{2}[/math]. Let us consider
Then [math](Z_n)_{n\geq 0}[/math] is a martingale. Indeed, by definition [math]Z_n[/math] is adapted and [math]Z_n\in L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)[/math] because
and thus [math]Z_n[/math] is bounded. Moreover,
and therefore [math](Z_n)_{n\geq 0}[/math] is a martingale. Now [math](Z_{n\land T})_{n\geq 0}[/math] is bounded and hence u.i., which implies that [math](Z_{n\land T})_{n\geq 0}[/math] converges a.s. and in [math]L^1[/math]. We also have that
On the other hand we have
Hence we get
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math](X_n)_{n\geq 0}[/math] be a supermartingale. Assume that one of the following two conditions is satisfied
- [math]X_n\geq 0[/math] for all [math]n\geq 0[/math].
- [math](X_n)_{n\geq 0}[/math] is u.i.
Then for every stopping time [math]T[/math] (finite or not) we get that [math]X_T\in L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)[/math]. Moreover, if [math]S[/math] and [math]T[/math] are two stopping time, such that [math]S\leq T[/math], then in case
- [math]\one_{\{S \lt \infty}X_S\geq \E[X_T\one_{\{ T \lt \infty\}}\mid \F_S][/math] a.s.
- [math]X_S\geq \E[X_T\mid \F_S][/math] a.s.
We first deal with the case [math](i)[/math]. We have already seen that if [math]T[/math] is a bounded stopping time, we have
Then we get that
General references
Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].