Summary
[math]
\newcommand{\indep}[0]{\ensuremath{\perp\!\!\!\perp}}
\newcommand{\dpartial}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\abs}[1]{\left| #1 \right|}
\newcommand\autoop{\left(}
\newcommand\autocp{\right)}
\newcommand\autoob{\left[}
\newcommand\autocb{\right]}
\newcommand{\vecbr}[1]{\langle #1 \rangle}
\newcommand{\ui}{\hat{\imath}}
\newcommand{\uj}{\hat{\jmath}}
\newcommand{\uk}{\hat{k}}
\newcommand{\V}{\vec{V}}
\newcommand{\half}[1]{\frac{#1}{2}}
\newcommand{\recip}[1]{\frac{1}{#1}}
\newcommand{\invsqrt}[1]{\recip{\sqrt{#1}}}
\newcommand{\halfpi}{\half{\pi}}
\newcommand{\windbar}[2]{\Big|_{#1}^{#2}}
\newcommand{\rightinfwindbar}[0]{\Big|_{0}^\infty}
\newcommand{\leftinfwindbar}[0]{\Big|_{-\infty}^0}
\newcommand{\state}[1]{\large\protect\textcircled{\textbf{\small#1}}}
\newcommand{\shrule}{\\ \centerline{\rule{13cm}{0.4pt}}}
\newcommand{\tbra}[1]{$\bra{#1}$}
\newcommand{\tket}[1]{$\ket{#1}$}
\newcommand{\tbraket}[2]{$\braket{1}{2}$}
\newcommand{\infint}[0]{\int_{-\infty}^{\infty}}
\newcommand{\rightinfint}[0]{\int_0^\infty}
\newcommand{\leftinfint}[0]{\int_{-\infty}^0}
\newcommand{\wavefuncint}[1]{\infint|#1|^2}
\newcommand{\ham}[0]{\hat{H}}
\newcommand{\mathds}{\mathbb}[/math]
In this chapter, we have learned the following concepts:
- Challenges in active causal inference: practical, ethical and legal challenges
- When confounders were observed: Regression, inverse probability weighting and matching
- When confounders were not observed: instrument variables
There are a few other widely used passive causal inference algorithms, but they are left for the final section on Remaining Topics Remaining Topics, such as difference-in-difference, regression discontinuity and double machine learning.
General references
Cho, Kyunghyun (2024). "A Brief Introduction to Causal Inference in Machine Learning". arXiv:2405.08793 [cs.LG].