Choose a number [math]U[/math] from the unit interval [math][0,1][/math] with uniform distribution. Find the cumulative distribution and density for the random variables
- [math]Y = U + 2[/math].
- [math]Y = U^3[/math].
Choose a number [math]U[/math] from the interval [math][0,1][/math] with uniform distribution. Find the cumulative distribution and density for the random variables
- [math]Y = 1/(U + 1)[/math].
- [math]Y = \log(U + 1)[/math].
Suppose we know a random variable [math]Y[/math] as a function of the uniform random variable [math]U[/math]: [math]Y = \phi(U)[/math], and suppose we have calculated the cumulative distribution function [math]F_Y(y)[/math] and thence the density [math]f_Y(y)[/math]. How can we check whether our answer is correct? An easy simulation provides the answer: Make a bar graph of [math]Y = \phi(\mbox{$rnd$})[/math] and compare the result with the graph of [math]f_Y(y)[/math]. These graphs should look similar. Check your answers to Exercise and Exercise by this method.
Choose a number [math]U[/math] from the interval [math][0,1][/math] with uniform distribution. Find the cumulative distribution and density for the random variables
- [math]Y = |U - 1/2|[/math].
- [math]Y = (U - 1/2)^2[/math].
Explain how you can generate a random variable whose cumulative distribution function is
Let [math]U[/math], [math]V[/math] be random numbers chosen independently from the interval [math][0,1][/math] with uniform distribution. Find the cumulative distribution and density of each of the variables
- [math]Y = U + V[/math].
- [math]Y = |U - V|[/math].
Let [math]U[/math], [math]V[/math] be random numbers chosen independently from the interval [math][0,1][/math]. Find the cumulative distribution and density for the random variables
- [math]Y = \max(U,V)[/math].
- [math]Y = \min(U,V)[/math].