Assume that [math]a \gt 1[/math].
- lab{5.4.11a}
Using the definition of [math]a^x[/math], show that
[[math]] \lim_{x\goesto\infty} a^x = \infty . [[/math]]
- lab{5.4.11b}
Using the result of \ref{ex5.4.11a}, prove that
[[math]] \lim_{x\goesto-\infty} a^x = 0 . [[/math]]
- lab{5.4.11c}
Using \ref{ex5.4.11a}, show that
[[math]] \lim_{x\goesto\infty} \frac{d}{dx} a^x = \infty . [[/math]]
- lab{5.4.11d}
Using \ref{ex5.4.11b}, show that
[[math]] \lim_{x\goesto-\infty} \frac{d}{dx} a^x = 0 . [[/math]]
- What do \ref{ex5.4.11a}, \ref{ex5.4.11b}, \ref{ex5.4.11c}, and \ref{ex5.4.11d} say geometrically about the graph of the function [math]a^x[/math]?
Assume that [math]a_1 \gt a_2 \gt 1[/math].
- lab{5.4.12a} Using the definition of [math]a^x[/math], show that, if [math]x \gt 0[/math], then [math]{a_1}^x \gt {a_2}^x[/math].
- Using \ref{ex5.4.12a}, show that, if [math]x \lt 0[/math], then [math]{a_1}^x \lt {a_2}^x[/math].
Evaluation of a limit of the form [math]\lim_{x\goesto a} f(x)^{g(x)}[/math] is not obvious if any one of the following three possibilities occurs. (i) \quad [math]\lim_{x\goesto a} f(x) = \lim_{x\goesto a} g(x) = 0[/math]. (ii) \quad [math]\lim_{x\goesto a} f(x) = 1[/math] and [math]\lim_{x\goesto a} g(x) = \infty[/math]. (iii) \quad [math]\lim_{x\goesto a} f(x) = \infty[/math] and [math]\lim_{x\goesto a} g(x) = 0[/math]. These three types are usually referred to, respectively, as the indeterminate forms [math]0^0[/math], [math]1^\infty[/math], and [math]\infty^0[/math]. The standard attack, akin to logarithmic differentiation, is the following: Let
One then applies L'H\^opital's Rule to the quotient, thereby hopefully discovering that [math]\lim_{x\goesto a} h(x)[/math] exists and what its value is. If it does exist, it follows by the continuity of the exponential function that
But, since
we therefore conclude that
and the problem is solved. Apply this method to evaluate the following limits.
- [math]\lim_{x\goesto0+} x^x[/math]
- [math]\lim_{x\goesto\infty} x^{\frac1x}[/math]
- [math]\lim_{x\goesto0} (1+2x)^{\frac1x}[/math].