What cubic polynomial best approximates [math]x^4-2x^3+3x-3[/math] near [math]x=2[/math]?
Another statement of Taylor's Theorem which gives a different form for the remainder is the following: Let [math]f[/math] be a function with continuous [math](n+1)\mathrm{st''[/math] derivative at every point of the interval [math][a,b][/math]. Then
}
- lab{9.8.12a}
Using integration by parts, show that
[[math]] \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)} (t) \; dt [[/math]][[math]] = - \frac1{n!} f^{(n)} (a)(b-a)^n + \int_a^b \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)} (t) \; dt . [[/math]]
- Using induction on [math]n[/math] and the result of part \ref{ex9.8.12a}, prove the above form of Taylor's Theorem in which the remainder appears as an integral.
Let [math]f[/math] have a continuous second derivative at every point of an interval containing the number [math]a[/math] in its interior, and let [math]f^\prime(a) = 0[/math]. Show that [math]f[/math] has a local maximum value at [math]a[/math] if [math]f^{\prime\prime} (a) \lt 0[/math], and a local minimum value at [math]a[/math] if [math]f^{\prime\prime} (a) \gt 0[/math]. [Hint: Use the Taylor Formula [math]f(x) = T_1(x) + R_1[/math] and the fact that, if a continuous function is positive (or negative) at [math]a[/math], then it is positive (or negative) near [math]a[/math].]