⧼exchistory⧽
4 exercise(s) shown, 0 hidden
BBy Bot
May 31'24
[math]
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\newcommand{\mathds}{\mathbb}
\renewcommand{\P}{\operatorname{P}}
\renewcommand{\L}{\operatorname{L}}
[/math]
Let [math]X_i\sim\mathcal{N}(0,1)[/math] and [math]X=X_1+\dots+X_d[/math].
- Use the formula [math]\E(f(X_i))=(2\pi)^{-1/2}\int_{\mathbb{R}}f(x)\exp(-x^2/2)\dd x[/math] to show that [math]\E(\exp(tX_i))=(1-2t)^{-d/2}[/math] holds for [math]t\in(0,1/2)[/math].
- Derive the estimate [math]\P\bigl[X\geqslant a\bigr] \leqslant\inf_{t\in(0,1/2)}\frac{\exp(-ta)}{(1-2t)^{d/2}}[/math] for [math]a \gt 0[/math].
BBy Bot
May 31'24
Restate the Random Projection Theorem and the Johnson-Lindenstrauss Theorem by using Landau symbols to express the dependencies of [math]\epsilon[/math], [math]k[/math] and [math]n[/math].
BBy Bot
May 31'24
[math]
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\newcommand{\mathds}{\mathbb}
\renewcommand{\P}{\operatorname{P}}
\renewcommand{\L}{\operatorname{L}}
[/math]
Let [math]n \gt k[/math] be integers.
- Implement a random projection [math]T\colon\mathbb{R}^d\rightarrow\mathbb{R}^k[/math] and test it for small [math]d[/math] and [math]k[/math].
- Put [math]d=1000[/math], generate 10,000 points in [math]\mathbb{R}^d[/math] at random, project them via [math]T[/math] to [math]\mathbb{R}^k[/math] and compute, for different values of [math]k[/math], the worst distorsion of a pairwise distance
[[math]] \epsilon:=\max\Bigl(1-\min_{x\not=y}\medfrac{\|Tx-Ty\|}{\sqrt{k}\|x-y\|}, \max_{x\not=y}\medfrac{\|Tx-Ty\|}{\sqrt{k}\|x-y\|}-1\Bigr) [[/math]]that occurs.
- Compare the outcome of your experiment with the relation of [math]\epsilon[/math] and [math]k[/math] that is given in the Johnson-Lindenstrauss Lemma, by replicating Figure based on the data from (ii).
- Explain how you would pick [math]\epsilon[/math] and [math]k[/math] if you are given a dataset in [math]\mathbb{R}^d[/math] and want to do a dimensionality reduction that does not corrupt a classifier based on nearest neighbors.