Find the general real-valued solution of each of the following differential equations.
- [a [math]\deriv2y - 6\dydx - 7y = 0[/math]
- [math]\deriv2y + 6\dydx +9y = 0[/math]
- [math](D^2+6D+5)y = 0[/math]
- [math](D^2-2D+10)y = 0[/math]
- [math](4D^2+4D-3)y = 0[/math]
- [math]\deriv2y + 6\dydx = 0[/math]
- [math](D^2+2D+6)y=0[/math]
- [math]4\deriv2y + 4\dydx + y = 0[/math]
- [math]\nxder2yt + 4 \nxder{}yt + 5y = 0[/math]
- [math]\nxder2xt + \nxder{}xt + x = 0[/math].
Show by substitution that the function defined by [math]y=(c_1x + c_2)e^{rx}[/math] is a solution of the differential equation [math](D-r)^2y=0[/math].
Let [math]r[/math] be a real number, and [math]c_1[/math] and [math]c_2[/math] complex numbers. Prove that, if [math](c_1x+c_2)e^{rx}[/math] is a real-valued function, then [math]c_1[/math] and [math]c_2[/math] must both be real.
Let [math]r_1 =\alpha+i\beta[/math] and [math]r_2=\alpha-i\beta[/math], where [math]\alpha[/math] and [math]\beta[/math] are real numbers and [math]\beta \ne 0[/math]. Prove that, for any two complex numbers [math]c_1[/math] and [math]c_2[/math], if the function
is real-valued, then [math]c_1[/math] and [math]c_2[/math] are complex conjugates of each other.
For each of the following differential equations, find the general real-valued solution by first finding an equivalent set of first-order linear differential equations and then solving these successively to find [math]y[/math].
- [math](D+1)(D-2)(D-3)y=0[/math].
- [math](D-2)(D^2-6D+9)y=0[/math].
- [math](D-a)(D-b)(D-c)y=0[/math], where [math]a[/math], [math]b[/math], and [math]c[/math] are distinct real numbers.
Find the general real-valued solution of the differential equation
by solving an equivalent pair of equations. Use the fact that we have already derived the general real-valued solution of the second-order, homogeneous, linear differential equation with constant coefficients.
Using Theorem \ref{thm 11.4.4}, which gives the general real-valued solution of the [math]n[/math]th-order differential equation [math]p(D)y=0[/math], solve each of the following.
- [math](D-2)(D+1)^2y=0[/math]
- [math]\deriv3y - 7\dydx + 6y = 0[/math]
- [math](D-3)^2(D+1)(D-5)y=0[/math]
- [math]D(D^2+3D-4)y=0[/math]
- [math](D+2)^3(D-1)y=0[/math]
- [math](D+3)^2(D^2+3)y=0[/math]
- [math]\deriv3y + \deriv2y - 2\dydx = 0[/math]
- [math](D^2+2D+2)^2y=0[/math]
- [math](D+1)(D^2+2D+2)^2y=0[/math]
- [math]D^2(D^2+2D+2)^2y=0[/math]
- [math]\deriv4y - 81y = 0[/math]
- [math]\deriv3y+\deriv2y+\dydx+y=0[/math].