⧼exchistory⧽
1 exercise(s) shown, 0 hidden
BBy Bot
May 08'24
[math] \newcommand{\R}{\mathbb{R}} \newcommand{\A}{\mathcal{A}} \newcommand{\B}{\mathcal{B}} \newcommand{\N}{\mathbb{N}} \newcommand{\C}{\mathbb{C}} \newcommand{\Rbar}{\overline{\mathbb{R}}} \newcommand{\Bbar}{\overline{\mathcal{B}}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\E}{\mathbb{E}} \newcommand{\p}{\mathbb{P}} \newcommand{\one}{\mathds{1}} \newcommand{\0}{\mathcal{O}} \newcommand{\mat}{\textnormal{Mat}} \newcommand{\sign}{\textnormal{sign}} \newcommand{\CP}{\mathcal{P}} \newcommand{\CT}{\mathcal{T}} \newcommand{\CY}{\mathcal{Y}} \newcommand{\F}{\mathcal{F}} \newcommand{\mathds}{\mathbb}[/math]

Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math]X=(X_n)_{n\geq 0}[/math] be a supermartingale and let [math]T[/math] be a stopping time. Then

[[math]] X_T\in L^1(\Omega,\F,(\F_n)_{n\geq 0},\p) [[/math]]

and

[[math]] \E[X_T]\leq \E[X_0] [[/math]]

in each case of the following situations.

  • [math]T[/math] is bounded.
  • [math]X[/math] is bounded and [math]T[/math] is finite.
  • [math]\E[T] \lt \infty[/math] and for some [math]k\geq 0[/math], we have
    [[math]] \vert X_n(\omega)-X_{n-1}(\omega)\vert\leq k, [[/math]]
    for all [math]\omega\in\Omega[/math].