Let functions [math]f[/math] and [math]g[/math] be defined by
Find [math]h(x)[/math] if
- [math]h=f(g)[/math]
- [math]h=f+g[/math]
- [math]h=g(f)[/math]
- [math]h=fg[/math]
- [math]h=5fg^2[/math].
What is the domain and range of the functions [math]f[/math] and [math]g[/math] in Problem Exercise? What is the domain of each of the functions [math]h[/math]?
If [math]f(x)=x+1[/math] and [math]g(x) = x-1[/math], plot the graph of the function [math]\frac fg[/math].
Plot the graph of the composite function [math]F(g)[/math], where [math]F[/math] and [math]g[/math] are the functions defined by [math]g(x) = x-2[/math] and [math]F(x)= \frac1x[/math].
If [math]f[/math], [math]g[/math], and [math]h[/math] are functions, show that [math]f(g(h)) = (f(g))(h)[/math]. This is the Associative Law for the Composition of Functions.
If [math]f[/math] is a real-valued function, how would you define the functions [math]3f[/math]? How would you define [math]\sqrt f[/math]?
The velocity [math]v[/math] of a freely falling body depends on the distance [math]s[/math] that it has fallen according to the equation [math]v = \sqrt{2gs}[/math], where [math]g[/math] is the constant gravitational acceleration.
- lab{1.3.7a} Using an [math]s[/math]-axis and a [math]v[/math]-axis, plot the dependent variable [math]v[/math] as a function of the independent variable [math]s[/math].
- lab{1.3.7b} If [math]s[/math] depends on the time [math]t[/math] according to the equation [math]s=\frac12gt^2[/math], how does [math]v[/math] depend on [math]t[/math]?
Note that the variable [math]v[/math] in \ref{ex1.3.7a}, which depends on [math]s[/math], is not the same function as the variable [math]v[/math] in \ref{ex1.3.7b}, which depends on [math]t[/math]. Without knowing which is referred to, the meaning of the value of [math]v[/math] at 2 is ambiguous.
If [math]w = u^2 + u + 1[/math], [math]u = x^2 + 2[/math], and [math]v = x - 1[/math], what is the value of each of the following functions at an arbitrary real number [math]x[/math]?
- [math]u + v[/math]
- [math]w + v[/math]
- [math]wu[/math].
If [math]F(x) = x^3 + x + 2[/math] and [math]u = x^2 +1[/math] and [math]w = \frac{x+1}x[/math], then
- [math](F(u))(x)=[/math]
- [math]F(w(x))=[/math]
- [math](u+v)(x)=[/math]
The equation [math]y=2x +1[/math] defines [math]y[/math] as a function of [math]x[/math]. It also defines [math]x[/math] as a function of [math]y[/math]. Describe the latter function in two ways.